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The constant production hypothesis provides signals for cells to begin differentiation from ground to

vascular according to a mathematical model. To develop the reader’s intuition, we now develop sev-

eral properties of this model in one dimension. We begin with convergence properties at equilibrium,

to demonstrate plausibility of the parameters in Result 1 and then illustrate the stability of connections

forming according to the dynamics implied by Schema 1. The numerical values were chosen for compu-

tational convenience; although they highlight robustness over a range of parameter values, we emphasize

that reliable estimates of concentration, gradient, and diffusion values are currently unknown.

1 Behavior of the model in 1D

Suppose n + 1 cells are arranged in a file (path graph) indexed 0 through n from left to right. Suppose each

cell except the 0th produces a substance s at a rate K which is fixed. Denote by c(i, n) the concentration

in cell i and let c(0, n) = 0 at all times. The substance is allowed to diffuse from cell to cell if they

are connected and the associated coefficient is D. Let α = K
D

and ∆c(i, n) = c(i − 1, n) − c(i, n). The

dynamics are thus given by (dropping the n)

ct(i) = D(c(i − 1) − 2c(i) + c(i + 1)) + K.

Proposition 1. At steady-state, i.e., ct = 0, c(0) = 0 imposes the following:
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where α = K/D.

Proof. Rearrange the terms in the dynamics to obtain:

ct = D((c(i − 1) − c(i)) + (c(i + 1) − c(i))) + K.



So, ct = 0 implies

c(i − 1) − c(i) = c(i) − c(i + 1) − K
D

=⇒ ∆c(i) = ∆c(i + 1) + α,

and at the end of the chain ∆c(n) = α because there is no right connection. Thus, ∆c(n− j) = jα. Since

c(1) = ∆c(1) (because c(0) = 0), we have
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and the rest follows.

Proposition 2. The claims in Proposition 1 are true for a file of cells with 2n cells where c(2n + 1) = 0

is also imposed.

Further analysis of the 2D case may be found in ref. 1.

2 Illustration of Vein Formation Dynamics

The constant production hypothesis provides a framework for illustrating the vein formation dynamics.

Movies 1–5 are simulations with a single parameter changed. The demonstration is of the behavior of c

over a file of cells. Each cell produces the substance at the same constant rate K = 0.001 equally inside it.

Diffusion within a cell and through interfaces is accounted for by discretizing the interior and treating it

as four compartments. The diffusion coefficient between interior compartments is Dinterior, and Dinterface

is the one between two cells (compartments of adjacent cells). The simulation is initiated at c = 0 for

all compartments of all cells; and the two ends of the string of cells are held at a constant value: cR = 0

for the rightmost end, and cL = 0.01 for the other one. The dynamics of the distribution of c over the

compartments and cells is simulated using a time step of ∆t = 0.01 and the following update rule:

c(i) = c(i) + ∆t[Di|i−1(c(i − 1) − c(i)) + Di|i+1(c(i + 1) − c(i))],

where Di|j denotes the diffusion coefficient between compartment i and compartment j. The blue curve

in Fig. 6 shows the distribution of c approximately at convergence. The step-like shape is due to making



Dinterior = 800Dinterface, with Dinterior = 0.04, and allows one to clearly see where each cell starts and

the next begins.

The movies show how applying Schema 1 in the work can result in vascular strands that connect for

a wide range of parameter values. The simulations start as equilibrium is approached. The threshold for

differentiation is chosen to be the difference in concentration ∆c at the right end; this is where ∆c is largest

on the blue curve. As soon as the threshold is exceeded, Dinterface is changed to Dnew
interface = MDinterface

and the simulation proceeds as described.

Each of the five movies corresponds to a different value of M . When a change of Dinterface occurs,

the movie shows concentration decrease much faster within that cell than the rest. This demonstrates

graphically the differentiation “front.” Connection robustness is observed for M ≥ 30; simulations with

M = 30 (Movie 3), M = 40 (Movie 4) and M = 60 (Movie 5) demonstrate connections. However, observe

that for M = 10 (Movie 1) and M = 20 (Movie 2) the strand starting from the right never connects to the

strand starting from the left: there is never a sharp decay of the last cell due to an increase of D interface

on either side of the cell. Our model thus predicts an intimate relationship between timing, shape, size

and vascular connectivity.

A complete analysis in 2D of this phenomenon is beyond the scope of this paper. We simply note that,

just as these simulations illustrate varied dynamics with parameter changes, in 2D different parameter

values combine to result in more or less regular subdivisions of areoles. In real leaves, the regularity of

subdivision was used by Hickey to propose “leaf ranks” as an alternate character for classification (see [2]

for references and descriptions).

3 Whole-leaf Behavior

In the main text we showed that it is possible to obtain predictions of new vascular strands using Schema 1

and a single threshold τ . However, to achieve this we required that K and D be slightly different from

areole to areole: K 7→ 1√
µ
K and D 7→ √

µD (Fig. 5). As Result 1 of the main text suggests, similar

results should be obtained if we either (1) only vary the production rate by K 7→ 1
µ
K or (2) only vary the

diffusion coefficients D 7→ µD. In particular, any one of these schemes will achieve K
D

7→ 1
µ

K
D

. In Fig. 7

we demonstrate the effect of the two schemes by taking µ from Fig. 5 for each of the two stages shown

there. Compare Fig. 7B with Fig. 7D with Fig. 5C, and Fig. 7G with Fig. 7I with Fig. 5E. We observe

that there are only minor differences. In the absence of reliable parameter estimates these results point



to a falsifiable parameter relationship, which might be of interest to the experimental community.

4 Simulation of c in a young leaf

Cells were assumed to be square of unit volume, and their interfaces were the eight neighbors (lateral

and diagonal). In Figs. 1 and 5 vascular interfaces have diffusivity Dvasc = 5000Dground, and in Fig. 8

Dvasc = 100Dground. Interfaces between two vascular cells use Dvasc and all other interfaces use Dground =

1(area)(time)−1. The c-vascular cells in Figs. 3 and 4 were assumed to be sinks. Each interface is assumed

to be of unit area and each cell produces substance s at a rate of K = 1(mass)(time∗volume)−1. We define

the matrix M as Mij , the diffusivity between point i and point j for i 6= j, and Mii = −∑

j∈cells,j 6=i Mij.

If cell i is a sink, then Mii = 1 and ∀j 6= i, Mij = 0. The steady-state solution of Eq. 1 of the main text

can then be obtained by solving for c in the linear system Mc = − ~K, where ~K is the vector containing

the production of each cell i. Similarly, iterating cnext = ccurrent + dt(Mccurrent + ~K) approximates the

temporal behavior of c. The simulation in Fig. 9 involves adding an amount to one cell in ccurrent and

then iterating.

The predictions of new c-vascular strand creation are obtained in two ways: direct application of

Schema 1 or by drawing integral curves. In Fig. 3, the result of the first approach is shown. The

concentration is updated iteratively as described above, and, after each step, all interfaces with ∆c > τ

are updated (converting the diffusion constant from Dground to Dvasc). In the second approach, the

gradient vector field of c is used to draw the integral curves initialized at a point on the boundary where

‖∇c‖ is locally maximal (see Fig. 4 A and E for examples). Given a solution c as above, the vector field

F = ( ∂c
∂x

, ∂c
∂y

) is approximated on a square lattice with spacing h. The curves are obtained by the iteration

P (t+1) = P (t) +∆t F(P (t))

‖F(P (t))‖ where P (0) is the starting point and ∆t = 0.3h is the time step. At nonlattice

points F is interpolated. This approximates the program described in Schema 1 since the interface to

first exceed a threshold while cell P is being drained will be the one in the direction of F(P ). Notice that

P (t+1) will reach a local maximum of c (where ∇c = 0) and never leave it (see Fig. 4 B and F). This is

the natural stopping point in all simulations.
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